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This paper investigates the effects of mass dicontinuity on the
numerical solutions to quantum wells using the effective mass egua-
tion, The numerical methods utilized are the finite element method with
first-order elements, and the finite difference method with the entire
truncated solution domain discretized by equally spaced nodes. The
three Hamiltonians explored are the convention Hamiltonian, the
BenDantel and Duke Hamiltonian, and the Bastard Hamiltonian. It is
shown that the proper discretization patterns for both numerical
schemes may drastically improve the solution accuracy. The finite dif-
ference representation of the BenDaniel and Duke Hamiltonian using
the direct mass average is found more agcurate than the one using the
harmonic mags average. Itis further pointed out that, at the mass profile
discontinuities, the commonly accepted interface conditions for the
Bastard Hamiltonian are not natural conditions. This observation is
critical if the Bastard Hamiltonian is to be solved numericaily. % 1934
Academic Press, Inc.

1. INTRODUCTION

The single-band effective mass approach is widely used in
quantum well problems [1-5]. The envelope function
satisfies the effective mass equation,

Hjy = Ey, (1}
where H is the Hamiltonian operator and E is the
cigenenergy. Since the effective mass and the potential
energy depend on the location, the Hamiltonian is position-
dependent. The ecigensolutions to the effective mass
equation (1} are indispensable to the investigation of the
propertics of quantum weils.

There are several analytical means in the literature to
solve the cffective mass equation (1) for heterostructures
such as quantum wells and superiattices. The most com-
monly used method is 1o solve the transcendental equation
obtained by matching the appropriate interface conditions
for the envelope functions. The two interface conditions
usually used are the continuity of (1) the envelope fungtions
and (2) the first derivatives of the envelope functions, or the
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first derivatives of the envelope functions divided by the
mass. For a heterojunction not subject to an external field,
propagating and evanescent plane waves are used for the
envelope functions [ 2, 6, 7]. Airy functions are used for the
envelope functions in the presence of a uniform static elec-
tric field [8-13]. Usually, the exact solutions to piecewise
linear structures are obtainable by this transfer matrix type
of methodology.

The approximate solutions to Eq. (1} are explored by
several rescarchers, using Fourier transformation [ 147,
Green's functions [157, the perturbation method [167], and
the variational method [17]. The variational method is
based on the fact that the envelope function that satisfies
Eq. (1) is the one that makes the following functional
stationary [ 18]

(3, = SO -
<ly>

The effective mass equation (1) has also been solved by
two numerical methods. The first method is the finite dif-
ference method with equally spaced discretizations [4, 57
The second one is the finite element method. The finite ele-
ment method has been applied to problems in nuclear
physics [ (9], and in atomic and molecular physics [20-22]
after the first introduction by Askar to quantum mechanics
[23]. Recently the optimal finite-element mesh that mini-
mizes the energy excess has been reported and the results
for an infinite quantum well have been generated [24].
K. Nakamura et al. Ticst applied the finite element method
to incorporate the Ando’s interface conditions at the hetero-
Junctions [25-277. But, the effects of the effective mass
profile discontinuity on cither numerical method have not
yet been studied.

The hnite element method [28, 297 and the variational
method share the same fundamental concept as stated in
Eq. (2). The difference is that the variational method
approaches stationarity by presuming a formal envelope
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function with inserted parameters which are undetermined.
Then {£), is minimized with respect to these parameters
(17]. The number of undetermined parameters cannot be
many s0 as to elude the complexity of the (£, expression.
The accuracy of the solution greatly relies on the proposi-
tion of the formal envelope function. On the other hand, the
fintte element method has the simplicity of using low-order
polynomials as basis functions to approximate the real
envelope function and the flexibility of increasing the num-
ber of nodal points without complicating the formulation.

Although there are means to obtain the exact solutions to
quantum wells with piecewise linear profiles, numerical
methods become important if the quantum well profiles
are not linear or if the physical phenomena induced by
the many-body effects such as Coulomb and exchange
interactions are considered [§, 30, 317,

In this paper, a comparison of the finite element and the
finite difference solutions to a finite square quantum well
and a simple harmonic oscillator will be presented to
illustrate the effects of the mass discontinuity. With the dis-
continuous mass, the discretization patterns become impor-
tant to the solution accuracy, The BenDaniel and Duke
Hamiltonian has two finite difference equations: one uses
the direct average for the mass; the other uses the harmonic
average. It will be shown that the direct average is preferable
to the harmonic average. It will be shown that the direct
average is preferable to the harmonic average.

It was claimed in Ref. [5] that the Bastard Hamiltonian
is inappropriate to treat heterojunctions because it produces
discontinuous envelope functions. This paper will show that
the inappropriateness results from the lack of essential inter-
face conditions at the heterojunction and that it is fallacious
to solve the Bastard Hamiltonian by the finite difference
method without additional conditions at the interface.

2. GOYERNING EQUATIONS AND
NUMERICAL METHODS

Due to the location-dependence of the effective mass,
there is no unique form for the Hamiltonian in Eq. (1)
[32-35]. Three frequently used Hamiltonians will be
investigated in this paper: the conventional Hamiltonian,
the BenDaniel and Duke Hamiltonian, and the Bastard
Hamiltonian. In this section, the governing equations
derived from the three Hamiltonians will be given in the first
subsection; the finite element and finite difference formula-
tions will be presented in the next two subsections.

2.1. Governing Equations

The effective mass equation employing the conventional
Hamiltonian, the BenDaniel and Duke Hamiltonian, and
the Bastard Hamiltonian takes the following forms:
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Conventional Hamiltonian,

R d%y(z)
JZm(z) dz?

+ V(z) ylz) = Ey(z), (3}

BenDaniel and Duke Hamiltonian,

A2 d T 1 dy(z)
T 24 [m(z} dz

]+ Vi) Y(z)=Eg(z),  (4)

Bastard Hamiltonian,

R L ANz | 4P e)
4[m(z) dz* dz%m(z)

where 2, m(z), and V{z) are the location, the effective mass,
and the confinement potential, respectively.

For the bounded levels of the electron, the boundary
conditions read

]+ Ve (z)=Ej(z),  (5)

(6)

The boundary conditions encompass an infinite domain,
and this is not achievable for the numerical schemes
employing a finite number of finite-sized meshes. Usually,
these conditions are replaced by the approximate boundary
conditions [36],

Wix,)=y(x;)=0, (7
where x, and x, are positions at which the envelope
functions are sufficiently insignificant.

Inspecting both sides of Eqs. (3) and (4), it follows that
both the conventional Hamiltonian and the BenDaniel and
Duke Hamiltonian satisfy the continuity of the envelope
function at the discontinuous point of the mass z,,

Wlzg ) =iz ). (8)
Integrating both sides of Eqs.(3) and (4) across z,, the
conventional Hamiltonian gives

dplzy) _dpizs)

dz dz ©)
but the BenDaniel and Duke Hamiltonian yields,
L odieg) 1 apiz) )
m{z;) dz m(zd) dz

Equation (10) is usually interpreted as the continuity of the
probability flux [37]. Since Eqgs. (8} to (10) follow directly
from the governing equations (3) and (4), they are regarded
as natural interface conditions.
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The interface conditions given in Eqs. (8) and (10) were
claimed derivable by integrating the Bastard Hamiltonian
in Eq. (5) across the interface in Ref. [1]; namely, they were
treated as natural conditions for the Bastard Hamiltonian,
However, this assertion is nrot true and can mislead
researchers who try to solve the Bastard Hamiltonian by
numerical methods [5]. In the following paragraphs, it will
be shown that the envelope functions are unbounded at the
abrupt heterojunction uniess some interface conditions are
imposed essentially.

Suppose that the envelope function solution to
Eqg. {5) is continuous at an interface point z = z,, then
d*[r(z)/m(z))/dz* is singuiar to the order of d/dz[ 3(z — z4) ],
but 1/m(z} d*¥(z)/dz? is at most singular to the order of
3(z — z,,) because m(z) has an abrupt jump at z,. Therefore,
the envelope function fails to be continuous at all interface
points.

Furthermore, Eq. (5) can be written as

G 0
_?dz[m(z) dz :’

(11)

where m'(z) = dm(z)/dz and m” = d’m(z)/dz*. Assume that
Y(z) is bounded in the vicinity of an interface point, z,,
integrating both sides of Eq. (11) across the interface point
gives

Feyal

ZJ 1
= _J_, [;flz? (m'(z)z—zm(ﬂ m"(z)):| wiz)dz. (12)

The right-hand side of Eq. (12) is not convergent because it
involves the integration of [§{z — z,)]2 In other words,

[

which implies that both dyr(z; )/dz and dy(z} )/dz diverge.
Hence, [(z)| tends to infinity as z approaches z,; that is,
(2} is not bounded.

Conclusively, when the Bastard Hamiltonian is applied to
a structure with abrupt effective mass change, the envelope
function does not possess the continuity properties stated in
Eqgs. (9), (8), and (10). Thus, the interface conditions given
in Eqs. (8) and (10} are nor natural conditions.

The solutions to the conventional Hamiltonian (3), the
BenDaniel and Duke Hamiltonian (4), and the Bastard
Hamiltonian (5) are identical within the interval with a

xy(z)y= EY(z),

'

Zy

4
2

diverges, (13)
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constant mass and a constant potential because all
Hamiltonians reduce to the same differential form. If the
interface conditions given by Eqs. (8) and (10) are essen-
tially imposed on the Bastard Hamiltonian, the solutions to
the Bastard Hamiltonian are same as the BenDaniel and
Duke Hamiltonian {9].

2.2. The Finite Element Method

Each of the three Hamiltonians in Egs. (3) to (5) is a
special case of a general second-order self-adjoint cigen-
problem,

—ﬂa(z)m]wu) J(2) = Ey(z) =) =0. (14)
'z dz

For the conventional Hamiltonian,

hz
afz)=—

7 BR=mz) Vi), vtz =miz).

For the BenDaniel and Duke Hamiltonian,

(2)= A1
=y mzy
For the Bastard Hamiltonian, x(z) and y(z) are same as the
BenDaniel and Duke Hamiltonian, and

hZ
ﬁ(z) = ? m(z)3

1
l:m’(z}" -3 m{z) m”(z)j} + Viz). (15)
From the finite element formulation, the differential
eigenproblem becomes a linear eigenproblem,
KY=FE-M-Y. (16)

K and M arc the stiffness and the mass matrices, respec-
tively, and are given as

K= " [N"Ta(z) N' + NTB(z) N dz

x1

(17)
and

M:j”NTy(z)Ndz, (18)
X1

where W =[¥,. ¥, ., ¥y, N=[N, Ny, .., N1, and
N’ =dN/dz. N; and i, are the basis function and the nodal
value at the ith node, respectively, for i=1,2, .., M. M is
the number of nodes.
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In this paper, linear shape functions are utilized; thus
both K and M are tridiagonal and symmetric. K and M can
be assembled from element matrices given by

ngj‘[ a(n)h+ hA1—n)" Bln)
(1]

—a(n)fh.+h (1 —n) Bn} &
—aln)fh, +h.n(1—n) Bin) ’

a(m)th, + b n7fn)
(19)

and

M© =, |

\]

I:nﬂ—n)v(n) oy |4 20

where /1, is length of the element and # is the local coor-
dinate. # is related to the global coordinate by z=h_n + x,,
where x, is the global coordinate of the left end of the ele-
ment. In this paper, the integrations in the element matrices,
K and M are calculated by eight-point Gaussian
quadrature [38]).

From Egs. (15) and (19), the effective mass must be at
least be a C' function for the finite element formulation of
the Bastard Hamiltonian to be valid. (C*! denotes the set of
functions whose first derivatives are continuous.)

2.3. The Finite Difference Method

The finite difference method is gaining its popularity on
solving the effective mass equations given in Egs. (3) to (5).
The entired truncated solution domain is discretized by
equally spaced nodal points. The difference equations are
given below.

The solution domain [x,, x,] is discretized to N meshes
of equal size. The mesh length becomes 4z = (x, — x,)/N.
Then the central difference method is used, Some notational
conventions employed throughout this subsection are m, =
miz;), V.=Vi(z,), and yr, =y (z,), where z;, = x, + i - Az is the
coordinate of the ith nedal point, for i=0, 1,2, .., N. The
vanishing boundary conditions at z=x, and z = x, given in
Eq. {7} are translated to ¢, =4, =0.

The finite difference equation of the conventional
Hamiltonian (3) can be written as

R 1 LI |
o1+ l:‘(jgj'g‘;‘“l‘ Vi] ¥y

24z m,
L |
—Z(Tz)a;i¢f+1=5¢’n (21}

fori=1,2,.., N—1. When expressed in matrix form, it is
tridiagonal, but asymmetric.

Mathematically, the differential term, d/dz[1/miz)-
dyr(z)/dz], of the BenDaniel and Duke Hamiltonian (4) is
undefined at the mass discontinuities. The indefiniteness
of the function values introduces the ambiguity of the

581/110/2-7
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numerical schemes. In general, the value at the middle of the
ith mesh ({1/#%z))],, ) can be approximated by m, .
given by

(mr'+1,t‘2)ﬂ=%[(mi)0+(mi+!)g]9 (22)
where # is a real number. If # =1, Eq. (22) results in the
direct average of the nodal values of the mass. If 8= —1,
Eq. (22) becomes the harmonic average. The finite dif-
ference equations for the BenDaniel and Duke Hamiltonian
obtained by the # values of 1 and — | are termed the direct
difference equation (23) and the harmonic difference
equation (24), respectively,

h? 1
- (AZ)2 (mi—l +m,) Vi-1

+[’"2( N )+v]¢
(42)2 o tmg omtm 1

" ( : )w — By (23)
(42 \m;+m, ., LT
and
h? 1 1
_4(Az)2(mf_1+£)¢“‘

h? 1 2 1

+l:4(dz)2 (mi—l +;i+mr'+l) + Vl} wi
B> 1 1

e e LR A

for i=1,2,.., N—1. Both the direct and the harmonic
difference equations are tridiagonal and symmetric.
The difference equation for the Bastard Hamiltonian (5)

is
#? 1 1 A2 1
- (24z)? (ZZJ“ m,_ 1) Vit [(Azf (K) * V‘] v
B _E
B (242)2 (mf+ LT 1) WH’I - w'.,

fori=1,2, .., N1 Thisis also tridiagonal and symmetric.

It will be shown in the next section that the discretization
pattern for the finite difference plays an important role in
the numerical solution to the quantum well with a dis-
continuous mass profile. A proper discretization pattern
generates more accurate solutions than an improper pat-
tern. The terminology of proper and improper patterns is
first defined here. The proper discretization pattern for
the finite difference is the pattern which satisfies two
requirements: (1) the mass discontinuity coincides with a

(25)
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FIG. 1. An example of the proper discretization pattern of a SQW.

Only one end point of the well is regarded as belonging to its interior. The
other end point is considered exterior to the well. Consequently, the
average well width remains same as 2 sharp SQW.

nodal point, and (2} exactly one of the two adjacent mass
discontinuities can be treated interior to the mass profile
segment defined by these two discontinuous points. The
second requirement is to preserve the average well width of
the discretized representation of a quantum weli. An
example of a proper discretization pattern for a square
quantum well is depicted in Fig. 1.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the finite element and the finite difference
solution to a square quantum well (SQW) and a simple har-
monic oscillator (SHO) are presented. A simple harmonic
oscillator is characterized by a quadratic barrier and a con-
stant particle mass. There are two reasons to choose work-
ing on a SQW and a SHO. First, the mass profile of a SQW
exhibits finite discontinuities, but that of a SHO is con-
tinuous. Comparison of the solutions to a SQW and a SHO
obtained by the same Hamiltonian and numerical scheme
reveals the effect of discontinuity on the solution. Second,
both the SQW and the SHO are analytically solvable. The
transfer matrix method is applied to the SQW for the
analytic solution [39]. The analytic solution to a SHO is
well established [37]. Numerical eigenvalues are compared
with analytic solutions to demonstrate the effects of the
mass discontinuity on various computational schemes.

These calculations will be performed on the conduction
band of a structure fabricated by Gads and Al Ga, . As,
where x is the composition fraction of 47 The band-gap
energy and the effective mass for 4/ Ga,_ As take the
following relations [407], for 0 < x £ 0.45,

E (Al Ga,_,As)=0+vx

{eV), {26)

and

m(Al Ga, _, As)=a+ ux, (27)

where 6 =1.424, v=1.247, 0 =0.067m,, and u=0.083m,.
{m, is the electron rest mass.) Moreover, the band-offset
ratio of 0.80:0.20 is taken for all subsequent calculations.
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Both the finite element and the finite difference methods
eventually lead to a linear aigebraic eigenproblem. The sub-
routine, SSPACE, in Ref [41] is used to solve the eigen-
problem, where the convergence tolerance on cigenvalues is
taken as 10~'°. The calculations are implemented in C
language and computed on an IBM3090-300E machine
running AIX 370.

The numerical results of SQW and SHO structures are
discussed in the following two subsections.

3.1. Square Quantum Well

The well width of the SQW is L=9611A (34
monolayers), and its barrier height is ¥,=0400¢V, The
effective masses in the barrier and the well are 0.100m, and
0.067m,, tespectively. This SQW is equivalent to the
conduction band of a Gads-Al, 40, Gagsee As structure,

For each Hamiltonian, four numerical schemes are used
to solve the SQW and their accuracy is investigated. These
four schemes are the finite element method (FEM) with
proper and improper discretization patterns and the finite
difference (FD} method with proper and improper dis-
cretization patterns. The relative error is defined as the ratio
of the error of the numerical eigenvaiue to the analytic
solution (| E, - E2nalytic| ganalytic for the jth level), The end
points of the numerical selution domain used to produce
results in this subsection are x, = —x,=3.5L.

Conventional Hamiltonian. The relative errors of the
numerical methods versus the number of discretizations NV
are shown in Fig. 2. The results by a proper discretization

N

o« v
2
i A
R \
> - N
g o | =
o -
Tt b

10—8 i ro1o il I_LEVB;I‘['HI N |

10° 10° 10°

NUMBER OF MESHES

FIG. 2. Accuracy of SQW solution using the conventional Hamiltonian.
The relative error (| E,— E 33|/ E22aie) vergug the discretization number
{N) for the FEM and FD solutions with proper and improper discretiza-
tion patterns is plotted. The solutions by the proper discretization patterns
are in solid lines; those by the improper discretization patterns are in
dashed lines, The location of the discontinuous point is randomly placed in
the mesh for the improper FD solutions. However, the location of the dis-
continuous point is kept at a fixed fractional distance in the mesh for the
improper FEM solutions, The envelope functions shown in the window
confirm the natural interface conditions. )
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pattern are depicted by solid lines; those by an improper
discretization pattern are by dashed lines. The properly dis-
cretized patterns introduce less numerical errors than the
improperly discretized patterns for both the FEM and the
FD schemes. It is found that, for both methods, the relative
errors of the improper discretization pattern depend on the
location of the discontinuous point in the mesh. If the dis-
continuous points are randomly placed in the mesh, the
relative error as a function of N oscillates as illustrated by
the zigzag dashed line for the FD results in Fig. 2. If the dis-
continuous points are located at a fixed fractional place of
the mesh, say, three quarters from the left end of the mesh,
the relative error steadily decreases as shown by the dashed
line for the FEM results in Fig. 2. Note that the relative
errors of the FD with an improper discretization pattern are
rarely below 1077, With the solution domain properly dis-
cretized, the FEM and the FD scolutions reveal monotonic
convergence as the discretization number increases.

In the FEM solution, rather than equally spaced, the
noedal points are distributed more densely over the place
where the magnitude of the envelope function is larger.
Owing to this nonuniform distribution of meshes, the FEM
solutions are about 10 times more accurate than the equally
spaced FD solutiozns.

The envelope functions are plotted in the window of
Fig. 2. The envelope functions and their derivatives are
continuous at the heterojunctions as predicted by the
natural interface conditions in Egs. (8) and (9).

BenDaniel and Duke Hamiltonian. There are two finite
difference representations for BenDaniel and Duke
Hamiltonian: the direct difference equation {23) and the
harmonic difference equation (24). The relative errors of the

RELATIVE ERRCR

LEVEL 1
r1 eyl L 1

[ AN

10° ' -
10° 10 10
NUMBER OF MESHES

FIG. 3. Accuracy of SQW solution using the direct difference equation
of the BenDaniel and Duke Hamiltonian. The relative error versus the dis-
eretization number using the FEM and the FD methods with proper and
improper discretization patterns is depicted. The direct difference equation
for the BenDaniel and Duke Hamiltonian is used for this plot. The nota-
tional conventions follow those given in Fig. 2. The envelope functions
shown in the window confirm the natural boundary conditions.
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direct difference equation are plotted in Fig. 3 and those of
the harmonic difference equation, in Fig. 4.

The results by the direct difference representation of the
BenDaniel and Duke Hamiltonian exhibit similar features
to the conventional Hamiltonian. The envelope functions
are shown in the window of Fig. 3. The envelope functions
are continuous at the abrupt junctions, but their derivatives
are not. This agrees with the natural interface conditions
given in Eqgs. (8) and (10).

The harmonic difference equation with a proper dis-
cretization pattern shows in Fig. 4 that each eigenvalue has
its own optimal N, but that none of these optimal discretiza-

tion numbers coincides. Researchers working on the mis-

cible fluids in porous media prefer the harmonic average
over the direct average in dealing with the coefficient with
large spatial gradient [42,43]. We found that, for the
solution to the BenDaniel and Duke Hamiltonian, the
direct average provides more accurate results than the
harmonic average.

Tabie I displays analytic and numericai solutions to the
conventional Hamiltonian and the BenDaniel and Duke
Hamiltonian. In the table, the numerical results only include
the properly discretized FEM and FD solutions for com-
parison, and the finite difference solutions to the BenDantiel
and Duke Hamiltonian are obtained by the direct difference
equation. The table shows the results with the accuracy of
about 10~*=0.01 % and the results with the best accuracy
achieved in this work.

Similar FEM calculation has been done for an infinite
squar¢ quantum well, using an optimal mesh pattern in
Ref. [24], and it was reported that the relative error for the
first eigen level is about 107° for ¥ = 1000. With the same
N, the relative error of the first eigenenergy of a inite square

RELATIVE ERROR

NUMBER OF MESHES

FIG. 4. Accuracy of SQW solution using the harmonic difference equa-
tion of the BenDaniel and Duke Hamiltonian. The telative error versus the
discretization number using the FEM and the FD methods with the proper
and improper discretization patterns is depicted. The harmonic difference
equation for the BenDaniel and Duke Hamiltonian is wsed for this plot.
The notational conventions follow those given in Fig. 2,
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TABLEI
Solution to a SQW

Analytic  FEM rD FEM FD
solution  (N=500) (N=1295) (N=2695) (N=2695}
CH £, 00415523 00415556 00415471 00415524  0.0415511
(0.0080%) (—0.0125%) (0.0003%) (~0.0029%)
E, 01603302 0.1603499 01603087  0.1603309  0.1603252
00123%) (—0.0134%) (0.0004%) (—0.0031%)
E, 03292823 03293301 03292445 03292839 (3292736
{00145%) (—00115%) (0.0005%) (—0.0027%)
BDDH E, 00357664 00357698 00357608 Q0357665  0.0357651
(0.0094%) (—00157%) (0.0003%) (-0.0036%)
E, 01423513 01423684 01423313 0.1423519 01423467
(0.0120%) (—0.0141%) (0.0004%) (—0.0033%)
E; 03110624 03111106 03110247 03110641  0.3110537
(00155%) (—00121%) (0.0005%) (—0.0028%)

Note. The analytic solution and properly discretized FEM and FD
solutions to a SQW are tabulated. N given in the first row is the number
of discretizations used. CH and BDDH are the acronyms for the conven-
tional Hamiltonian, and the BenDaniel and Duke Hamiltonian, respec-
tively. E; is the eigenenergy of the ith Jevel in eV units. The percentage given
in the parentheses is the relative error (E, — Elvtic)/ganalyiic. the negative
sign means that the numerical solution is smaller than the analytic solution.

quantum well is found to be about 2 x 10~ ° in this paper.
This deviation may be due to two reasons. First, the calcula-
tion of a finite square quantum well needs to distribute
nodal points in the barriers to account for the evanescent
behavior of the envelope functions. Second, the mesh
pattern is not optimized.

For the calculations of SQWs with well widths and
barrier heights different from this specific example, the
closer the highest eigen level is to the barrier height, the
larger the numerical solution domain must be used to
ensure that the envelope functions decay to insignificant
magnitudes at both ends.

Bastard Hamiltonian. 1t was shown in Eqgs. (11) to (13)
that the solutions to the SQW by the Bastard Hamiltonian
without essentially imposed interface conditions exhibit
unbounded envelope function at the heterojunctions. If this
observation is ignored and the finite difference equation
(25) is used to analyze a SQW, the following phenomena
appear. First, the numerical scheme converges to different
eigenvalues for different discretization numbers, and the
eigenvalues fluctuate wildly. Second, each envelope function
show two kinks at the mass discontinuities as shown in
Fig. 5.

These behaviors can be explained as follows. In the finite
difference method, the envelope function is assumed to be
single-valued and finite at each discretization point. There-
fore, the theorctically unbounded envelope functions are
not tractable by using this nurmerical approach. This leads
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FIG. 5. False finite difference solution of a SQW using the bastard
Hamiltonian. The bastard Hamiltonian applied to a structure with a dis-
continuous mass profile such as a SQW leads to unbounded envelope func-
tions unless the interface conditions are essentially imposed. If one ignores
this and applies the FD to search for the eigensolutions, each envelope
function exhibits two kinks. In this plot, N =700 and x, = —x,=13.5

the numerical scheme to converge to a false solution.
Furthermore, in the finite difference method, a SQW is dis-
cretized as in Fig. 1; namely, the original discontinuous
mass profile is approximated by a piecewise linear (C°)
profile. The solutions to the Bastard Hamiltonian for the
quantum well with piecewise linear mass and potential
profiles are continuous and bounded as the two differential
terms in the square bracket of Eq. (5), 1/m(z)-d*y(z)/dz?
and d%/dz*[y(z)/m(z)], are singular to the same order at
the connection point of two linear pieces. This explains the
toundedness of the false envelope functions in Fig. 5.

The appearance of the kinks in the faise envelope function
shown in Fig. 5 can be explained as follows. Equation (12}
is generally true if the potential is a C° profile; namely,
Eq. (12) still holds at any finite difference nodal peint, z,.
Moreover, in the context of the finite difference method, the
mass profile is approzimated by a piecewise linear function.
Hence, in the infinitesimal region encompassing a FD nodal
point z;,

()= 222 IR
_[dmiz;") dm(z])
—[ = 4 ]-5(z—z,-). (28)
Substituting Eq. (28) to Eq. (12), it follows that
L dy@) | 1 yz) (dmiz)]
[Fz) Zz ],,fim(z,-f'( 2 ) )

i

If z; is not at the connection point of two linear segments
of different slopes such as the point at z; or z, in Fig. 1, then
dm(z;" )jdz —dm(z[ }/dz=(. Therefore, m"(z)=0 and
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dr(z)/dz is continuous. If z, is at the connection point on the
C? profile such as the point at Z=2,, 2, 1,2, OT Z,_, in
Fig. 1, then dm(z;" )/dz — dm(z; )/dz # 0. The discontinuity
of 1/m(z) dr(z)/dz is proportional to the discontinuity
of dm(z)/dz. This explains the crinkles at the abrupt
heterojunctions of the SQW.

The above arguments about the finite difference solution
to the Bastard Hamiltonian hold solely due to the spatial
discontinuity of the mass. The temporal dependence of the
time-dependent effective mass equation does not influence
the results in this aspect. We believe we have resolved the
paradoxial crinkles in Fig. 1 of the paper by C. Juang
etal. [5].

3.2. Simple Harmonic Oscillator

The particle mass of a SHO is independent of the particle
location, thus the mass profile of a SHO is continuous in
contrast to that of a SQW. The FEM [36] and the FD solu-
tions to a SHO will be presented in this section to show that
the discontinuity effects discussed in the previous subsection
are indeed induced by the abrupt heterojunctions.

The quadratic potential barrier of a SHO reads,

Viz)=4k2%, (30)
where k is the restoring force constant. With the restoring
force constant of k= 3.0328 x 10~> N/m. This SHO resem-
bles a parabolic quantum well whose potential barrier
varies quadratically from 0.0 eV to 0.4 ¢V within a distance
of 65.01 A (23 monolayers of the GaAs lattice), except
that the electron effective mass is assumed constant,
m=0.067m,.

Since the mass is a constant, the three Hamiltonians given
in Egs. {3) to (5) reduce to an identical form, and thus have

TABLE 11
Solution to a SHO

Analytic FEM FD FEM FD
sojution (¥=360) (NV=1200) (N=1320) (N=2320}
E, 00733628 00733668  0.0733594  0.0733629  (.0733619
(0.0055%) {(~0.0046%) (0.0001%) (—0.0012%)
E, 02200884 02201086 02200714  0.2200838  0.2200839
(0.0092%) (~0.0077%) (0.0001%) (—0.0021%)
E, 03668141 03668661 03667698 03668149  0.3668022
(0.0142%) (—00121%) (0.0002%)} (—0.0032%)

Note. The exact solution and FEM and FD solutions to an
SHO are shown. The three Hamiltonians have the same solution.
The notation used here follows the conventions of Table I.
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FIG. 6. Accuracy of solution to @ SHO. The relative errors of FEM and
FD solutions to a SHO are displayed as functions of the discretization
numbers. Due to the assumption of a constant effective mass, the three
Hamiltonians reduce to the same form. This plot can be interpreted as
results for any one of the three Hamiltonians. The envelope functions are
shown in the window,

the same eigensolutions. The analytic eigenvalues of 2 SHO
are well known, and, for the nth level, the eigenenergy is

1 k
E,,=(n+§>ﬁ\/;.

The proper discretization patterns devised for the SQW
are not needed for the SHO because there is no discon-
tinuity on the mass profile. The numerical solutions show
that both the finite element and the finite difference methods
produce rather accurate results as given in Table II. The
relative errors by the FEM and the FD are plotted in Fig. 6.
Both numerical schemes show monotonous convergence as
the discretization number increases. Because the numerical
solutions obtained depend only on the numerical scheme
and the mesh pattern, the eigenenergies tabulated in
Table II and the relative errors plotted in Fig 6 can be
interpreted as results obtained by using any one of the three
Hamiltonians.

By the Bastard Hamiltonian, the finite difference solu-
tions to 2 SHO show that the eigenenergies converge to the
analytic results and that the envelope functions as depicted
in Fig. 6 possess no kink unlike the SQW solutions. Addi-
tionally, the harmonic representation of the BenDaniel and
Duke Hamiltonian produces results which agree with the
analytic solutions to high accuracy. As a result, the numeri-
cal solutions to a SHO confirms that the effects caused by
the discontinuities of a SQW disappear in the case of
a SHO.

(31}

4. CONCLUDING REMARKS

This paper has investigated the effects of the mass discon-
tinuity on the numerical solutions to the effective mass
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equation. The numerical methods investigated in this paper
are the finite element method with linear basis functions and
the finite difference method with the entire truncated solu-
tion domain discretized by equally spaced nodal points.

The discontinuous points of the mass profile are shown to
introduce additional error if they are not properly placed in
the mesh. The proper finite element discretization pattern
requires that the mass dicontinuity coincide with the nodal
point. Besides the above condition, the proper finite dif-
ference discretization pattern further requires that only one
of the two adjacent discontinuities be considered nterior to
the mesh defined by them.

Two finite difference representations of the BenDDaniel
and Duke Hamiltonian have been explored. The direct dif-
ference equation is found more accurate than the harmonic
difference equation.

It was reported that the envelope functions obtained from
the finite difference equation of the Bastard Hamiltonian
show crinkles at the mass discontinuities. We found that it is
because the Bastard Hamiltonian has unbounded envelope
function at the mass discontinuity. The finite difference
equation contradictorily assumes that all nodal valees are
finite. Further interface conditions have to be essentially
imposed at the mass discontinuity to well pose the problem
using the Bastard Hamiltonian.
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